Teaching Robots

Wie lernen Maschinen

Es gibt verschiedene Methoden wie Maschinen lernen.

Supervised Learning

Systeme die auf klar geführte Dateninputs, klar definierte Daten-Outputs liefern. Sie sind also von Menschen begleitet und lernen z. B. Gesichter erkennen.

Unsupervised Learning

Systeme, die fähig sind, versteckte Muster von den Input-Daten zu identifizieren. Sie können anhand von Clusters, Muster, Ähnlichkeiten oder Andersartigkeit. z. B. Erkennung von Krebszellen auf Röntgenaufnahmen.

Reinforcement Learning

Systeme, die kein «Training-Input» erhielten, aber durch die Bewertungen eines Trainers lernen. Sie beginnen Muster zu entwickeln und werden bewertet und so optimieren sie ihre Resultate.

Deep Learning Open Source Frameworks

Google Tensorflow, Intel neon, Berkeley Vision caffe, Microsoft Cognitive Tool Kit, Facebook Pytorch, Apache MXNet und Spark, Nishikawa Chainer, Chollet Keras, Nvidia Theano

Programmiersprachen/Techniken

Python, R, C, C++, CUDA, MATLAB

Video vom Unterschied zwischen Learning vs. Deep Learning.
© Simplilearn

Machine Learning Giants

Google: Deepmind

Nvidia: Deep Learning AI

Amazon: AWS

Microsoft: Azure AI

Baidu: Machine Learning

Intel: AI

UBER: AI

Vertiefe dich ins ganze Kapitel

Machine Learning